Data on the course

Show instruction and examinations
PAP323 Advanced Space Plasma Physics, 10 cr 
Code PAP323  Validity 01.01.2017 -
Name Advanced Space Plasma Physics  Abbreviation Advanced Space 
Scope10 cr   
TypeAdvanced studies
  GradingGeneral scale 
    Can be taken more than onceYes
Unit Master's Programme in Particle Physics and Astrophysical Sciences 

Target group 

Master’s Programme in Particle Physics and Astrophysical Sciences is responsible for the course.

Module where the course belongs to:

  • PAP300 Advanced Studies in Particle Physics and Astrophysical Sciences
    Optional for:
    1. Study Track in Astrophysical Sciences

The course is available to students from other degree programmes.


The course will be offered in the spring term, in III and IV periods.

Learning outcomes 
  • You will obtain in-depth understanding of several space plasma physical phenomena giving a good background for research work in space physics or other related fields
  • You will obtain skills to solve analytically many theoretically demanding problems, for examples solving of the dispersion equation and Landau damping from the Vlasov theory, charged particle drift speeds in time and spatially varying electromagnetic fields and in current sheets, conditions and growth rates of several plasma instabilities, and solving shocks/instabilities from Rankine-Hugoniot equations
  • You will obtain deep conceptual understanding and knowledge of theory behind several key space plasma physical phenomena, such magnetic reconnection, force-free fields, flux ropes, magnetic helicity, shock acceleration of charged particles, solar dynamo, scattering and transport.
Completion methods 

Contact teaching, but can be also taken as a distance learning course

  • Good knowledge of electrodynamics (e.g.,  Electrodynamics I and II), thermodynamics/statistical physics and readiness to use standard mathematical methods of physics (e.g., Mathematical Methods of Physics I-II)
  • Plasma Physics, or knowledge of similar level on plasma phyiscs
Recommended optional studies 
  • Solar Physics
  • Numerical Space Physics

These lectures are intended to advanced undergraduate and post-graduate students interested in space physics, plasma physics, applications of electrodynamics, statistical physics, hydrodynamics, etc. The course starts with plasma fundamentals, reviewing the basic concepts and looks more in depth to plasma distribution functions. The other topics include

  • A detailed description of charged particle motion in electromagnetic fields, including time and spatially varying fields, including adiabatic invariants, motion in current sheets, and galactic cosmic rays will be covered.
  • The wave propagation in dielectric media, the main focus being on propagation through the layered ionosphere, but cold plasma wave theory will be briefly revised.
  • A detailed coverage of the Vlasov theory and Landau damping
  • A brief revision of magnetohydrodynamic (MHD) theory, the main focus will be put on subjects like force-free fields, flux ropes in space plasmas and magnetic helicity.
  • Plasma Instabilities (micro- and macroinstabilities)
  • Theory of collisionless shocks waves, dissipation of shocks, shock acceleration and solar energetic particles
  • Magnetic reconnection (both theory and observations in space plasmas)
  • Basics of solar dynamo
  • Radiation and scattering (e.g., Bremsstrahlung, cyclotron and synchrotron)
  • Transport (Fokker-Planck theory)
Study materials and literature 
  • Lecture notes

Other recommended material

  • Koskinen, H. E. J., Physics of Space Storms, Springer/PRAXIS, 2011
  • Baumjohann, W., Treumann, R., Basic Space Plasma Physics, Imperial College Press, 1996.
  • Kivelson, M. G., and Russell (eds.), C. T., Introduction to Space Physics, Cambridge University Press, 1995.
  • Russell, C.T., Luhmann, J.G., Strangeway, R.J., Space Physics: An Introduction, Cambridge University Press
  • Treumann, R., and Baumjohann, W. Advanced Space Plasma Physics, Imperial College Press, 1997.
Activities and teaching methods in support of learning 
  • lectures
  • Weekly exercises. Weekly exercises include also reading of scientific articles related to the course themes (+ answering questions/making summaries based on them)
  • Possible seminar
Assessment practices and criteria 

Final grade is based on exercises (40%) and final exam (60%).


Current and future instruction
No instruction in WebOodi

Future examinations
Functions Name Type cr Teacher Schedule
cancelled Advanced Space Plasma Physics  General Examination  10  Urs Ganse 
05.06.20fri 10.00-14.00
Registration Advanced Space Plasma Physics  General Examination  10  Urs Ganse 
14.08.20fri 10.00-14.00
You may enter WebOodi: